Diverging temperature responses of CO2 assimilation and plant development explain the overall effect of temperature on biomass accumulation in wheat leaves and grains

نویسندگان

  • Iman Lohraseb
  • Nicholas C. Collins
  • Boris Parent
چکیده

There is a growing consensus in the literature that rising temperatures influence the rate of biomass accumulation by shortening the development of plant organs and the whole plant and by altering rates of respiration and photosynthesis. A model describing the net effects of these processes on biomass would be useful, but would need to reconcile reported differences in the effects of night and day temperature on plant productivity. In this study, the working hypothesis was that the temperature responses of CO2 assimilation and plant development rates were divergent, and that their net effects could explain observed differences in biomass accumulation. In wheat (Triticum aestivum) plants, we followed the temperature responses of photosynthesis, respiration and leaf elongation, and confirmed that their responses diverged. We measured the amount of carbon assimilated per "unit of plant development" in each scenario and compared it to the biomass that accumulated in growing leaves and grains. Our results suggested that, up to a temperature optimum, the rate of any developmental process increased with temperature more rapidly than that of CO2 assimilation and that this discrepancy, summarised by the CO2 assimilation rate per unit of plant development, could explain the observed reductions in biomass accumulation in plant organs under high temperatures. The model described the effects of night and day temperature equally well, and offers a simple framework for describing the effects of temperature on plant growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The impact of atmospheric temperature and soil nitrogen on some physiological traits and dry matter accumulation of wheat (Triticum aestivum cv. Bahar)

Wheat is the most important cereal crop in the world as well as in Iran. The studies related to the effects of global climate change on wheat production usually assess the impact of changes in atmospheric CO2 concentration and temperature on growth and yield. On the other hand, nitrogen is the most crucial plant nutrient for crop production and the proper management and improving the utilizatio...

متن کامل

Physiological responses of two tomato (Lycopersicun esculentum M.) cultivars to Azomite fertilizer under drought stress.

This study was conducted in order to investigate the effect of drought stress and Azomite fertilizer on some physiological traits of two tomato (Lycopersicon esculentum M.) cultivars (izmir and Izabella). A randomized complete design with factorial arrangement with three replications was used. Treatments consisted of three levels of irrigation including FC (control), FC (mild drought stress), a...

متن کامل

Evaluation of health risk to humans in consumption of wheat grown in nickel-contaminated soils

In this research, accumulation and distribution of nickel in root, leaves and stem and grains of wheat were studied to assess the health of wheat grain for human consumption. A greenhouse experiment was conducted based on randomized complete block design with three replications. Wheat was grown under two nickel concentrations in soil (0.0 and 100 mg kg-1). At maturity, wheat was divi...

متن کامل

Effects of sowing time and rate on crop growth and radiation use efficiency of winter wheat in the North China Plain

Crop depends on its canopy to intercept solar radiation to drive both assimilation and water, nutrient absorption for its growth. Field experiments, involving three sowing time and three sowing rate, were conducted at Luancheng Station to investigate the effects of canopy size and development on crop growth and radiation use efficiency (RUE) of winter wheat during 2009/2010 and 2010/2011 gr...

متن کامل

Response of wheat growth, grain yield and water use to elevated CO 2 under a Free‐Air CO 2 Enrichment (FACE) experiment and modelling in a semi‐arid environment

The response of wheat crops to elevated CO2 (eCO2 ) was measured and modelled with the Australian Grains Free-Air CO2 Enrichment experiment, located at Horsham, Australia. Treatments included CO2 by water, N and temperature. The location represents a semi-arid environment with a seasonal VPD of around 0.5 kPa. Over 3 years, the observed mean biomass at anthesis and grain yield ranged from 4200 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017